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Abstract

A ®nite element formulation of rigid-plastic plates subjected to in-plane forces is developed using stress-based
elements and linear programming. Three elements are established, namely a triangular plate element, a bar element

and a beam element. The problem is formulated as a lower bound solution, and the dual variables are interpreted as
displacements. Both load and material optimization are formulated. The method is applied to concrete plate
structures modeling both the distributed and the concentrated reinforcement. An e�cient computational scheme is

used, thereby reducing the size of the problem. Finally, numerical examples are presented to show the capabilities of
the method. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Calculation of the ultimate load carrying capacity for reinforced concrete structures such as slabs or

plates is often based on the assumption of a perfect plastic material behavior. The calculation methods

are either based on the lower bound theorem or the upper bound theorem. The upper bound method

seeks a feasible collapse mode for which the load carrying capacity is minimal, whereas the lower bound
method seeks a stress distribution in equilibrium for which the load carrying capacity is maximal.

Originally, calculations were made manually and the yield-line method, developed by Johansen (1972),

was a pioneering work. The ®rst numerical approaches to the perfect plasticity assumption date back to

the 1970s where frame structures (Grierson and Gladwell, 1971) and slabs (Anderheggen and KnoÈ pfel,
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1972) were treated. Both upper and lower bound formulations were implemented in a ®nite element
scheme well-known from linear elastic analysis.

Application of perfect plasticity to reinforced concrete plates is in large part due to Nielsen (1971,
1984), who has solved many practical problems. In recent years, this approach has received an increased
interest due to a wider acceptance of perfect plasticity applications in the new Eurocode for concrete
structures.

So far, numerical solutions to plate problems have seemed somewhat more complex than numerical
solutions to slab problems. This is due to the fact that the elements have to be fairly complicated if the
in¯uence from concentrated reinforcement has to be taken into account. A simpli®ed numerical solution
based on the stringer method in which the plate is divided into rectangular shear elements with
concentrated orthogonal reinforcement was formulated by Damkilde et al. (1994b). However, as this
type of analysis has a rather limited scope, the aim of the present work is to cover a wider range of
applications.

The calculation method is based on the lower bound method, and the stress ®eld is described via a
®nite element discretization where the elements have stress parameters. As the structure is statically
indeterminate only a part of the stress parameters are needed to secure equilibrium, whereas the rest can

Nomenclature

A area of element
Ax, Ay area of reinforcement per length in x- and y-direction
ai, bi coordinate di�erence in x- and y-direction for element side i
C constraint matrix
ÅC compact constraint matrix
Cd material constraint matrix
Cs strength vector
fc compressive strength of concrete
f x

t , f
y

t tensile strength in x- and y-direction
fy yield stress of reinforcement
h element equilibrium matrix
H system equilibrium matrix
l, li length of element and element side i
M moment
N normal force
px, py load intensity in the x- and y-direction
q element nodal force vector
R system load vector
t thickness
V displacement vector
W resistant moment
b element stress parameter vector
bs system stress parameter vector
l scalar on variable load vector
c plastic strain vector
sx, sy, t in-plane stresses
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be used to redistribute the load in order to maximize the load carrying capacity. The yield criteria are
linearized and the formulation thereby becomes a Linear Programming (LP)-problem. In addition the
collapse mode can be identi®ed as the solution to the dual LP-problem, and the displacements can be
identi®ed as the marginal prices for the equilibrium equations. The method also enables optimization of
the material for given loadcases. A triangular element with linear stress variation is established along
with compatible bar and beam elements. Previously, a similar triangular element was used in soil
mechanics (Sloan, 1988).

For the design of concrete plates there exists di�erent methods, based on the assumption that the
material behavior for both concrete and reinforcement can be regarded as plastic. The main di�erences
lie in the determination of the deformations in the plate. Application of perfect plastic models implicitly
assumes su�cient deformation capabilities in the structure in order to allow for the redistribution of
forces. This approach is used in this context and has been applied by others, see e.g. Ashour and
Morley (1994). One major advantage of the perfect plastic models is the possibility of direct
optimization of e.g. the reinforcement.

A full non-linear analysis of the problem has been used by Blaauwendraad and Hoogenboom (1996,
1997). Physically, this approach is the most correct one. However, their ®nite element formulation is not
established as an optimization method based on LP. Anderheggen et al. (1994) used a more ad hoc
based solution principle. The idea was to generate di�erent equilibrium systems by considering several
systems of ®ctitious initial strains, superposed upon the elastic solution. This method does not give the
load-displacement curve and, therefore, it cannot give information on the formation of cracks.

In concrete design the Strut-and-Tie models (Marti, 1985; Schlaich et al., 1987) have been received
with great interest. The basic idea is to de®ne a system of struts and ties which carries the loads in
compression and tension as illustrated in Fig. 1(a). The method is based on an engineering judgement,
and a number of guidelines have been established for choosing an optimal way of carrying the loads.
The plastic redistribution of stresses is only taken into account indirectly by choosing natural ways of
carrying the load. The Strut-and-Tie models have been applied by many authors to solve practical
design problems (Schlaich and SchaÈ fer, 1991; Zielinski and Rigotti, 1995; Yun and Ramirez, 1996).
Typical problems concern reinforcement around holes, at supports or in corner regions. A weakness in
the method is that the stress state is not necessarily optimal as it primarily consist of members in pure
tension or compression. The only zones with a biaxial stress state is the small regions where the tension/
compression members meet. This limitation exists e.g. in the modeling of a biaxial arch action, see Marti
(1985). The Strut-and-Tie model can be considered as a lower bound method, and our numerical
approach can be considered as an enhanced model. In Fig. 1(b) a ®nite element mesh of the same
problem is illustrated. The advantages of our approach are that it is not necessary to make any
assumptions to the stress pattern, and that the analysis determines the optimal stress distribution.

2. Formulation

In the limit state analysis the lower bound method is applied. A lower bound solution is a stress state
where

. Equilibrium is satis®ed

. Yield criteria are not violated

The problem is discretized by the traditional Finite Element concept with stress-based elements. In a
Finite Element context the discretized equilibrium equations are given by

Hb � Rc � lR �1�

P.N. Poulsen, L. Damkilde / International Journal of Solids and Structures 37 (2000) 6011±6029 6013



where b are the stress parameters and H the equilibrium matrix. The load consists of a constant part Rc

and a part R proportional to a scalar load parameter l: The equilibrium matrix H is composed of
contributions from the individual elements, and formulas for the local equilibrium matrices are given in
a later section. It should be noted, that the number of stress parameters generally exceeds the number of
equilibrium equations.

In general, the yield criteria are non-linear functions of the stress and strength parameters. However,
a linearization of the yield criteria is employed in order to ensure an e�cient optimization. In each
element the yield criteria are checked in a number of points. The number of points depend on the stress
variations in the elements. The yield criteria for all elements can be stated as

CbRCs �2�

Fig. 1. (a) Strut-and-tie model; (b) ®nite element model.
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where each row represents a linearized yield criterion. The values in C depend on the linearization
planes, whereas the values in Cs depend on the material strengths.
The objective is to determine the optimal stress distribution which maximizes the external load for a

given structure or which minimizes the material costs for a given load. Due to the linearized yield
criteria the optimization problem results in a LP-problem. The LP-problem for load optimization is
given as

maximize:
�

0T 1
	� b

l

�

restrictions:

�
H ÿR
C 0

��
b
l

� �
R

�
Rc

Cs

�
�3�

The solution gives the optimal value of the object function l and the corresponding stress parameters b:
Furthermore the marginal or shadow prices of the restrictions are determined. The marginal price is
de®ned as the increase in the object function for a unit change in the limiting value in the right-hand
side. Thus a marginal price of 0 means that the restriction is not actually limiting the optimal value.

According to the general theory of LP (Luenberger, 1989), each primal LP-problem has a dual
counterpart, which can be derived directly from the original problem. The dual LP-problem for the load
optimization problem is given as

minimize:
�

RT
c CT

s

	�ÿV
c

�

restrictions:

�
HT CT

ÿRT 0T

��ÿV
c

��
�
�
0
1

�
�4�

where the dual variables V and c can be interpreted as the displacements and the plastic strains,
respectively (Krenk et al., 1994). The optimal solution for the primal problem is also the optimal
solution for the dual problem. The displacements correspond to the marginal-prices of the equilibrium
equations, whereas the plastic strains correspond to the marginal prices of the yield criteria. For the
discretized problem the optimal solution is both a lower and upper bound solution.

In material optimization design variables d are added. In order to maintain the linear programming
problem the yield criteria must be linear in the design variables as shown

Cb� CddRCs �5�

where Cd depends on the linearization of the yield criteria.
In material optimization the load is given, but several loadcases may exist. The stress parameters

di�er from loadcase to loadcase, and shakedown is not considered. For n loadcases the LP-problem is
de®ned as

minimize:
�

0T � � � 0T aT
	
8>>>><>>>>:
b1

..

.

bn

d

9>>>>=>>>>;
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restrictions:

266666666664

H

. .
.

H
C Cd

. .
. ..

.

C Cd

377777777775

8>>>><>>>>:
b1

..

.

bn

d

9>>>>=>>>>;

�
..
.

�
R

..

.

R

8>>>>>>>>>><>>>>>>>>>>:

R1

..

.

Rn

Cs

..

.

Cs

9>>>>>>>>>>=>>>>>>>>>>;
�6�

where the content of a are the material weights re¯ecting the cost of the corresponding design variables.
Practical design requirements, such as minimum and maximum of design variables, are not included

in Eq. (6) but ®t directly in the LP-problem.
The LP-problems for load and material optimization can be written in a compact form using only the

statically indeterminated stress parameters and thereby reducing the number of variables (Damkilde and
Hùyer, 1993). The compact form of the LP-problems are given in Appendix A. The limit state analysis
of plates has been implemented in the system limitS (Damkilde and Krenk, 1997) which also covers limit
state analysis of slabs and frames.

3. Finite element formulation

In order to be able to model plates with arbitrary geometry and concentrated reinforcement three
di�erent elements are needed, namely a triangular plate element, a bar element and a beam element. The
bar and beam elements are compatible with the plate element and can be used along the sides of the
plate element.

The equilibrium equations for an element can be given in a compact notation

q � hb �7�
where h is the equilibrium matrix and the content of q are the generalized external nodal forces in
equilibrium with the stress parameters b: The contributions from the element equilibrium matrices h are
assembled in the equilibrium matrix H for the total system similarly to the Finite Element method. The
generalized nodal forces can be either stresses, forces or moments depending on the type of the
equations. Some of the equilibrium equations secure continuity in the stresses across element sides
whereas other secure equilibrium between forces or moments from intersecting line elements. The
practical organization is a topological problem well-known from standard Finite Element techniques.

3.1. Plate element

The stress variation in the triangular plate element is chosen to be linear and the stresses within the
element are, therefore, interpolated linearly from values at the corner nodes. The element is similar to an
element previously formulated by Sloan (1988). With the three stresses sx, sy and t at each node the
number of stress parameters per element are nine.

The equilibrium matrix for a plate element can be written as8>><>>:
q1

q2

q3

qc

9>>=>>; �
2664

h1

h2

h3

hc1 hc2 hc3

3775
8<: b1
b2
b3

9=; �8�
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where the numbers 1, 2 and 3 refers to the nodes shown in Fig. 2 and the letter c refers to the center of
the element.

The nine stress parameters in the element have to ful®l the local equilibrium leading to two interior
equilibrium equations formulated in the x- and y-directions

sx, x � t,y � px � 0

sy, y � t,x � py � 0 �9�
where px and py are the distributed loads per unit area in the x- and y-directions, respectively. As the
stresses are chosen to vary linearly px and py have to be constant over the element. The equilibrium
equations consist of two parts namely the external load and the contributions from the stress parameters
which can be written as generalized nodal forces, see Eq. (7). The equilibrium is secured by the balance
of these two parts. The external load enters the right-hand side in Eq. (1). The generalized nodal forces
corresponding to the distributed load are referred to the central node, see Fig. 2. The part of Eq. (9)
corresponding to the stress parameters is established as a sum of the contributions from each corner
node

qc �
�
qx
qy

�
� qc1 � qc2 � qc3 �10�

where the contribution from the stresses at node i can be written as

qci �

2664
bi
2A

0 ÿ ai
2A

0 ÿ ai
2A

bi
2A

3775
8>><>>:
tsix

tsiy

tti

9>>=>>; � hcibi �11�

where hci depend on the geometry of the element. The area of the element is A and the geometry of the
triangle is de®ned by the coordinates of the three corner nodes �xi, yi� where i takes the value 1, 2 and
3. Side i opposite node i is considered as a vector �ai, bi), with the length li

Fig. 2. Generalized nodal forces.
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ai � xk ÿ xj bi � yk ÿ yj li �
����������������
a2
i � b2

i

q
�12�

where i, j and k are a permutation of 1, 2 and 3.
Furthermore, the system must ensure equilibrium of stresses across element boundaries. For the plate

element this applies to the stresses normal to the sides as well as to the shear stresses, while the stresses
parallel to the sides can be discontinuous. As the stress variation is linear the equilibrium equations is
established in two points along a side. For convenience these equations are established at the ends of
each side, see Fig. 2. The generalized nodal forces at node i are given solely by the internal stresses at
node i, see Eq. (8). The terms in the equilibrium matrix stemming from the stresses at node i are given
as

qi �

8>>>>>><>>>>>>:

q j
2s

q j
2t

qk1s

qk1t

9>>>>>>=>>>>>>;
�

26666666666666664

b2
j

l 2j

a2
j

l 2j
ÿ2ajbj

l 2j

ajbj

l 2j
ÿajbj

l 2j

b2
j ÿ a2

j

l 2j

b2
k

l 2k

a2
k

l 2k
ÿ2akbk

l 2k

akbk

l 2k
ÿakbk

l 2k

b2
k ÿ a2

k

l 2k

37777777777777775

8>><>>:
tsix

tsiy

tti

9>>=>>; � hibi �13�

By use of Eqs. (8), (11) and (13) the equilibrium matrix for the plate element can be established.
If an element has two sides on an inner or outer boundary the stress continuity demands in Eq. (13)

result in four constraints on the three internal stress parameters at the corner node which connects these
two sides. The redundant constraint can be eliminated geometrically or a non full rank may be accepted
in the factorization of the equilibrium equations (1).

3.2. Bar and beam elements

A bar element with axial force and a beam element with bending moments are established. The bar
and beam elements are used for modeling concentrated reinforcement and steel members, respectively.
The beam element is also necessary in order to model curved reinforcement with straight elements as the
bar element cannot transfer the axial force from one element to another. The beam element re¯ects the
physical action and introduces compressive stresses, perpendicular to the beam element, in the
neighbouring plate elements.

To ensure proper interaction with plate elements the stress variation of the bar element must
correspond to a linear varying axial load. This leads to a quadratic variation of the normal force, and
three stress parameters are, therefore needed, see Fig. 3 where the generalized nodal forces are also
shown.

The equilibrium matrix for the bar element is given as
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8>><>>:
q1N
q1t
q2N
q2t

9>>=>>; �
266666664

ÿ1 0 0

3

l

1

l
ÿ4
l

0 1 0

ÿ1
l

ÿ3
l

4

l

377777775
8<:N1

N2

N3

9=; �14�

where the generalized nodal forces q1t and q2t are shear stresses times the plate thickness, which act
together with the appropriate shear contributions from Eq. (13) to ensure equilibrium along the bar
element. The generalized nodal forces q1N and q2N are normal forces which may act together with forces
from adjacent bar or beam elements.

In order to ensure proper equilibrium interaction with plate elements the stress variation of the
beam element must correspond to a linear transverse load. This leads to a cubic stress variation
with four stress parameters, see Fig. 4 where the generalized nodal forces are also shown.

The equilibrium matrix for the beam element is given as

8>>>>>><>>>>>>:

q1V
q1M
q1s
q2V
q2M
q2s

9>>>>>>=>>>>>>;
�

266666666666666664

ÿ11
2l

2

2l

18

2l
ÿ 9

2l

ÿ1 0 0 0

ÿ18
l 2

9

l 2
45

l 2
ÿ36
l 2

2

2l
ÿ11
2l

ÿ 9

2l

18

2l

0 1 0 0

9

l 2
ÿ18
l 2

ÿ36
l 2

45

l 2

377777777777777775

8>><>>:
M1

M2

M3

M4

9>>=>>; �15�

where the generalized nodal forces q1s and q2s are normal stresses times the plate thickness. Similarly to
the bar element these stresses act together with the appropriate contributions from the plate element Eq.
(13) to ensure equilibrium along the beam element. The generalized nodal forces q1V and q2V are shear
forces which may act together with forces from adjacent bar or beam elements. The generalized nodal
forces q1M and q2M are moments and they act together with moments from adjacent beam elements.

Fig. 3. Stress parameters and generalized nodal forces for a bar element.
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3.3. Displacements for dual problem

The dual interpretation of the linear programming problem enables the determination of the collapse
form of the structure. The marginal price of the end nodes in the bar and the beam elements can be
directly interpreted as the displacement in the node. The midside nodes which state equilibrium along
the element side, require a scaling of the marginal price. A distributed load with the intensity 1 at one
end gives a total load l=2, where l is the length of the side. Thus, the displacements have to be scaled
with the factor 2=l and be referred to the centre of gravity at one third of the length. The same applies
to the plate element, i.e. the equilibrium equations at the center are to be scaled by 1=A, where A is the
area of the element. The displacements of the plate element reproduce the rigid part of the collapse
mode, but the additional part is not physically illustrative.

4. Yield criteria

In order to formulate a linear programming problem the yield criteria must be linear in the stress
variables. The yield criteria for a reinforced plate and for a beam are non-linear and subsequently have
to be linearized.

4.1. Plate

Nielsen (1984) proposed the yield criterion shown in Fig. 5 for a reinforced plate. The yield criterion
is given by the equations

ÿÿ f xt ÿ sx
�ÿ
f
y
t ÿ sy

�� t2 � 0

ÿ� fc � sx�
ÿ
fc � sy

�� t2 � 0 �16�

where fc is the compressive strength and the tensile strengths are

f xt �
Axf

x
Y

t

f
y
t �

Ayf
y

Y

t
�17�

Fig. 4. Stress parameters and generalized nodal forces for a beam element.
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where t is the thickness, Ax and Ay are areas of reinforcement per length and f xY and f
y
Y are the yield

stresses of the reinforcement in the x- and y-directions, respectively. The yield criterion is shown in
Fig. 5.

In the case of load optimization, i.e. where the material parameters of the plate are known, the size of
the yield surface is ®xed beforehand. This makes it possible to linearize from the top of the cones to
points on the elliptic intersection of the cones as indicated by the straight lines in Fig. 5. The ellipse is
transformed into a circle which can be approximated as desired. The transformation from points on the
circle s 2 � t2 � 1 to the actual stresses is given as

sx � 1

2

ÿ
f xt ÿ fc

�� 1

2
s
ÿ
f xt � fc

�

sy � 1

2

ÿ
f
y
t ÿ fc

�ÿ 1

2
s
ÿ
f
y
t � fc

�

t � 1

2
t
��������������������������������������ÿ
f xt � fc

�ÿ
f
y
t � fc

�q
�18�

In the case of material optimization the size and position of the yield surface is a function of the
material parameters. Due to the non-linear expression in Eq. (16) it is impossible to use the same
principle as in the case of load optimization. This would lead to non-linear expressions in the material
parameters. Thus, in the case of material optimization the four lines in the base of the sx±sy-plane are
used. These lines are linear in the material parameters. As the x±y directions have to be weighted
equally, the slope of the planes has to be the same in both directions. The planes are now established
using the maximum slope not violating the yield surface at any point, see Fig. 6.

sx � t < f xt

ÿsx � t < fc �19�

Similar restrictions apply to the y-direction and by changing the sign of the shear stresses it gives eight
restrictions.

Fig. 5. Yield criteria for a plate.
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4.2. Bar and beam

Linear yield criteria for a bar and a beam, respectively are given as

ÿAfyRNRAfy

ÿWfyRMRWfy �20�

where fy is the yield stress of the reinforcement, A is the area of reinforcement and Wfy is the plastic
moment capacity.

In a beam element with both normal and bending forces a combination of N and M is necessary. In
the case of load optimization where the strengths are known a linearization, as shown in Fig. 7(a), is
used. Whereas, in the case of material optimization the linearization in Fig. 7(b) is used in order for the
restrictions to be linear in the material parameters.

Fig. 6. Linearization of the yield surface in the case of material optimization.

Fig. 7. Linearization of the yield surface for (a) load optimization; (b) material optimization.
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5. Examples

5.1. Deep beam

The ®rst example is a plate with isotropic reinforcement subjected to a uniform load at the top face,
see Fig. 8(a). The example has an exact solution, see Nielsen (1984). This example is analysed with two
di�erent meshes, both shown in Fig. 8(a). The mesh shown on the left side in Fig. 8(a) corresponds to
the exact solution which can be found by dividing the beam into four regions with constant stress. The
element, which is capable of a linear stress variation, can therefore, reproduce the exact solution.

With the material parameters given in Fig. 8(b) the ultimate load capacity for the uniform mesh,
shown on the right side in Fig. 8(a), is found to be 78% of the exact solution. In the exact solution the
normal stress distribution in the middle section is compression in the upper part and tension in the
lower part. The choice of the material parameters in Fig. 8(b) places the stress discontinuity in the upper
element in the uniform mesh. This explains the relatively large di�erence in the ultimate load capacity.
A re®nement of the element mesh in the upper part would improve the result signi®cantly.

5.2. End wall

The next example is a wall subjected to wind load which has previously been examined by Damkilde
et al. (1994b) using the stringer method. The geometry, boundary conditions and wind load from the
left are shown in Fig. 9(a). The element mesh is also shown in Fig. 9(a) where the bar elements are
indicated by thick lines. The shear panels in the stringer method are divided into four elements in order
to eliminate the dependency of the direction of the diagonals. The material parameters used in this
example are where all plate elements have the same reinforcement. The same applies to bar elements.
The ultimate load capacity, using 16 restrictions per yield surface, is found to be l � 106:84 with wind
from left and l � 104:29 with wind from right. The stringer method gives the values l � 72:25 and 74.34
which are approximately 30% lower than the values for the present method. This seems reasonably since

Fig. 8. Deep beam example.
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the stringer method simpli®es the stress distribution to tension±compression in the stringers and to pure
shear in the shear panels. The plate element is capable of a more re®ned stress distribution combining
normal stresses and shear stresses. The collapse mode is found by use of Eq. (26), and for the bar
elements it is shown in Fig. 10.

For both loadcases, the collapse is seen to be a shear mode at the two bottom holes. In order to
reduce the amount of reinforcement we consider material optimization with two loadcases, i.e with wind

Fig. 9. End wall.

Fig. 10. Collapse mode with wind from (a) left; (b) right.
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from both sides with l � 72:25: The concentrated reinforcement in the bar elements has been chosen to
be continuous in both directions except for the door hole. This gives six material parameters in each
direction. Similarly, the distributed reinforcement has been chosen to be continuous except for holes.
This gives four material parameters in the horizontal direction and ®ve in the vertical direction. The
amount of reinforcement is hereby reduced to 27.1 � 10ÿ3 m3 or 45.9% compared to the uniform
reinforcement given in Fig. 9(b). For the stringer method these values are 37.0� 10ÿ3 m3 and 62.6%.

5.3. Deep beam with hole

The last example is a deep beam with a large hole which has previously been analysed by Schlaich et
al. (1987) using the Strut-and-Tie Model. The example and the main reinforcement arrangement, as
designed by Schlaich et al., are shown in Fig. 11. Schlaich et al., suggest additional reinforcement such
as a mesh on either surface of the wall, nominal column reinforcement at the left of the hole and
stirrups below the hole. This example has also been analyzed by Blaauwendraad and Hoogenboom

Fig. 11. Example with reinforcement design by Schlaich et al.

Fig. 12. Element model.
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(1996) using a stringer panel method. In their analysis a coarse model is used where the lower left
corner, including the hole is left out. A model of this example, using the plate, bar and beam elements,
is shown in Fig. 1(b). The thick lines in Fig. 1(b) indicate the bar and beam elements. Beam elements
are used to model the bending of the diagonal reinforcement. The reinforcement arrangement by
Schlaich et al. is used both as concentrated and as distributed reinforcement. Additional distributed
reinforcement is added in both directions in order to carry the load 3 MN. This example is also
analysed using material optimization. The chosen element model is shown in Fig. 12. There is a total of
21 material parameters, namely eight for the concentrated reinforcement and seven and six for the
distributed reinforcement in the x- and y-direction, respectively, see Fig. 13. By using these material
parameters the amount of reinforcement is reduced by 16%. Increasing the number of material
parameters would presumably reduce the amount of reinforcement even more. However, for practical
design reasons the number of material parameters should be limited.

6. Conclusion

Three stress-based elements are explicitly formulated in a general ®nite element concept. A method of
calculating the load carrying capacity of a reinforced plate with concentrated reinforcement and beams
is established. Furthermore, material optimization is established and provides an e�ective tool in
determining the optimal reinforcement design of complex plate structures. The established plate element
provides a more realistic stress distribution than, e.g. the stringer method or the Strut-and-Tie model
which both simpli®es the stress distribution. Due to the triangular form of the plate element any
irregular geometries can be modelled. The above examples prove the e�ectiveness of the method.
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Appendix A. E�cient computational implementation

The equilibrium equations (1) can be split up in to two parts H0 and H1, thereby identifying the

Fig. 13. Material parameters.

P.N. Poulsen, L. Damkilde / International Journal of Solids and Structures 37 (2000) 6011±60296026



statically determinated stress parameters b0: The number of statically determinated stress parameters
equals the number of independent equilibrium equations. The matrix H0 has full rank and can be
regarded as a statically determinated part of the structure carrying the external load in itself but with no
possibility of redistributing stresses.

�
H0 H1

�� b0
b1

�
� Rc � lR �21�

The inverse matrix Hÿ10 exists if the structure is su�ciently supported, and b0 can be determined.

b0 � Hÿ10

ÿ
Rc � lRÿH1b1

� �22�

For the plate problems the inverse matrix Hÿ10 should be established using full pivoting in order to
secure the most stable reduced linear programming problem. For frame and slab problems a partial
pivoting scheme is su�cient.

With C partitioned as H in Eq. (21) the LP-problem for load optimization (3) can be written as a
compact LP-problem

maximize:
�
0T 1

	� b1
l

�

restrictions:
�

ÅC ÅCl
�� b1

l

�
R ÅCs �23�

where

ÅC � C1 ÿ C0Hÿ10 H1

ÅCl � C0H
ÿ1
0 R

ÅCs � Cs ÿ C0H
ÿ1
0 Rc �24�

The advantage of this formulation is the reduced number of variables and restrictions. The LP-problem
is solved using a LP-solver by Damkilde et al. (1994a). The LP-solver uses in®nite variables and thereby
reduces the problem compared to the traditional approach splitting each variable into two.

The dual problem to the compact LP-problem is

minimize: ÅC
T

s c

restrictions:

"
ÅC

T

ÅC
T

l

#
c

R
R

�
0
1

�
�25�

This compact dual LP-problem for load optimization could also be found directly from Eq. (4) by using
the same decomposition of H as in Eq. (21). This would give the relation

V � HTÿ1
0 CT

0c �26�
With a standard factorization of H in the form L D U, where L and U are the lower and upper
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triangular matrices, respectively and D the diagonal matrix, the inverse of HT can be found by
backsubstitution using UT D LT and thereby avoiding extra factorization.

By use of the dual variables from the LP-problem (3) the collapse mode can be found from Eq. (26).
The compact LP-problem in the case of material optimization is found by use of the same

decomposition of H as in Eq. (21). This gives

minimize:
�
0T � � � 0T aT

	
8>>>>><>>>>>:
b11

..

.

bn1
d

9>>>>>=>>>>>;

restrictions:

2664
ÅC Cd

. .
. ..

.

ÅC Cd

3775
8>>>>><>>>>>:
b11

..

.

bn1
d

9>>>>>=>>>>>;
R

..

.

R

8>>><>>>:
ÅC
1

s

..

.

ÅC
n

s

9>>>=>>>; �27�

where ÅC is given in Eq. (24) and

ÅC
i

s � Cs ÿ C0H
ÿ1
0 Ri �28�

The compact dual LP-problem for material optimization is

maximize:
n

ÅC
1T

s � � � ÅC
nT

s

o8>><>>:
c1

..

.

cn

9>>=>>;

restrictions:

266664
ÅC

T

. .
.

ÅC
T

CT
d . . . CT

d

377775
8>><>>:
c1

..

.

cn

9>>=>>;
�
..
.

�
R

8>>>><>>>>:
0

..

.

0
a

9>>>>=>>>>; �29�

where the displacements can be found from

Vi � HTÿ1
0 CT

0c
i �30�
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